Energieausweis für Wohngebäude

gemäß Önorm H 5055 und Richtlinie 2002/91/EG OIB Oesterreichisches Institut für Bautechni

GEBÄUDE			
Gebäudeart	Mehrfamilienhaus	Erbaut	1967
Gebäudezone	Wohnzone	Katastralgemeinde	Untereisenfeld
Straße	Kalkofenstraße 42, 44	KG-Nummer	51238
PLZ/Ort	4600 Wels	Einlagezahl	430, 469
Eigentümer	Neue Heimat Gärtnerstr. 9, 4021 Linz	Grundstücksnummer	89/67, 89/82

SPEZIFISCHER HEI	ZWÄRMEBEDARF BEI 3400 HEIZGRADTAGEN (REFERENZKLIMA)
A ++	
A +	
Α	
В	HWB-ref = 44 kWh/m ² a
С	
D	
E	
F	
G	

ERSTELLT			
ErstellerIn	Karl Spachinger	Organisation	Linz Energieservice GmbH - LES
ErstellerIn-Nr.		Ausstellungsdatum	29.05.2013
GWR-Zahl		Gültigkeitsdatum	29.05.2023
Geschäftszahl	LES-NEH-7-1068	Unterschrift	LINZ ENERGIESERVICE GMBH - LES 4021 Linz Wiener Straße 151

Dieser Energieausweis entspricht den Vorgaben der Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Institutes für Bautechnik in Umsetzung der Richtlinie 2002/91/EG über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG).

EA-01-2007-SW-a EA-WG 25.04.2007

Energieausweis für Wohngebäude

38

gemäß Önorm H 5055 und Richtlinie 2002/91/EG OIB

GEBÄUDEDATEN

LEK-Wert

Brutto-Grundfläche 4.024,68 m²
beheiztes Brutto-Volumen 11.297,9 m³
charakteristische Länge (Ic) 3,59 m

Kompaktheit (A/V) 0,28 1/m
mittlerer U-Wert (Um) 0,70 W/m²K

KLIMADATEN

Klimaregion N
Seehöhe 312 m
Heizgradtage 3609 Kd
Heiztage 221 d
Norm-Außentemperatur -14,8 °C
mittlere Innentemperatur 20 °C

WÄRME- UND ENERGIEBEDARF

	Referenzklima		Standortklima		Anforderungen	
	zonenbezogen	spezifisch	zonenbezogen	spezifisch		
HWB	175.355 kWh/a	43,57 kWh/m²a	195.155 kWh/a	48,49 kWh/m²a		
WWWB			51.415 kWh/a	12,78 kWh/m²a		
HTEB-RH			71.873 kWh/a	17,86 kWh/m²a		
HTEB-WW			86.761 kWh/a	21,56 kWh/m²a		
HTEB			162.212 kWh/a	40,30 kWh/m²a		
HEB			408.782 kWh/a	101,57 kWh/m²a		
EEB			408.782 kWh/a	101,57 kWh/m²a		
PEB						
CO2						

ERLÄUTERUNGEN

Heizwärmebedarf (HWB):

Vom Heizsystem in die Räume abgegebenen Wärmemenge die benötigt wird, um während der Heizsaison bei einer standardisierten Nutzung eine Temperatur von 20°C zu halten.

Heiztechnikenergiebedarf (HTEB):

Endenergiebedarf (EEB):

Energiemenge die bei der Wärmeerzeugung und -verteilung verloren geht. Energiemenge die dem Energiesystem des Gebäudes für Heizung und Warmwasserversorgung

inklusive notwendiger Energiemengen für die Hilfsbetriebe bei einer typischen

Standardnutzung zugeführt werden muss.

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen

der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

EA-01-2007-SW-a EA-WG 25.04.2007

Anhang zum Energieausweis gemäß OIB-Richtlinie 6 (8.1.2)

Verwendete Hilfsmittel und ÖNORMen:

```
Berechnungsverfahren: Monatsbilanzverfahren
Klimadaten nach ÖNORM B 8110-5
Heizwärme- und Kühlbedarf nach ÖNORM B 8110-6
   Transmissionsleitwert:
      Vereinfachte Berechnung nach 5.3
   Lüftungswärmeverlust:
      Für Wohngebäude nach 7.3
   Innere Wärmegewinne:
      Für Wohngebäude nach 8.2.1
   Solare Wärmegewinne:
      Für Wohngebäude nach 8.3
      Glasanteil gem. ÖNORM EN ISO 10077-1
      Verschattungsfaktor vereinfacht nach 8.3.1.2.2
   Wirksame Wärmekapazität:
      Vereinfachter Ansatz nach 9.1.2 für … Bauweise
Heiztechnik-Energiebedarf nach ÖNORM H 5056:
                                                  Details siehe Angabeblatt
Raumlufttechnik-Energiebedarf nach ÖNORM H 5057: Details siehe Angabeblatt
   Für den Nutzenergiebedarf der Luftheizung
```

Der Energieausweis wurde erstellt mit ECOTECH Software, Version 3.0

Ermittlung der Eingabedaten:

Geometrische Daten: lt. Planunterlagen. Bauphysikalische Daten: lt. Aufnahme vor Ort bzw. Default-Werten lt. gültiger OIB Richtlinie bzw. gültigem Leitfaden Energietechnisches Verhalten von Gebäuden (siehe dazu zusätzliche Anmerkungen unter "Weitere Informationen".

Haustechnik Daten: lt. Aufnahme (Auskunft Ansprechpartner).

Weitere Daten:

Grundsätzlich wurden durch den AG keine Planunterlagen zur Verfügung gestellt, sondern es wurde die Erstellung eines Gebäudeaufmaß beauftragt. Da durch ein Gebäudeaufmaß gewisse Bauteile in ihrer Stärke nicht ermittelt werden können (z.B. erdanliegende Wände, erdanliegender Fußboden oder Bauteile, welche nicht von beiden Seiten zugänglich sind), konnten diese nur geschätzt bei der detaillierten Berechnung berücksichtigt werden. Gleiches gilt für den Bauteilaufbau selbst, wobei dieser mehrere Bauteile umfasst (z.B. sämtliche Decken). Sämtliche Bauteile müssen nur zerstörungsfrei aufgenommen werden. Ausnahmefälle können sich im Zuge der Vor-Ort-Begehung zeigen und diese werden dann natürlich gemäß dem tatsächlichen Aufbau berücksichtigt (z.B. oberste Geschoßdecke, bei der der Aufbau bis zur Stahlbetondecke bzw. dem tragenden Element eingesehen werden kann).

Weitere Informationen siehe Beilage.

Kommentare:

Es wird darauf hingewiesen, dass die im Energieausweis ausgewiesenen energetischen Kennzahlen des Heizwärmebedarfs HWB und des Endenergiebedarfs EEB Normverbrauchswerte darstellen. Die Angaben zu diesen Werten lassen keine endgültigen Rückschlüsse auf den tatsächlichen Energieverbrauch zu, da dieser aus dem tatsächlichen Nutzerverhalten und aus standortbedingten klimatischen Besonderheiten und Unstetigkeiten des Jahreszeitenklimas resultiert.

Energiekennzahlen

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Bruttogeschoßfläche BGF =	4024,68	m²
Oberfläche (A) =	3147,45	m²
Bruttorauminhalt (V) =	11297,92	m³
A / V =	0,28	1/m
HWB Referenzklima	43,57	kWh/m²a

Gebäudedaten am Standort (U-Werte, Heizlast)

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Gebäudekenndaten						
Norm-Außentemperatur:	-14,8	°C	V_B	11297,92 m ³	lc	3,59 m
Berechnungs-Raumtemperatur:	20	°C	A_B	3147,45 m ²	U _m	0,70 [W/m ² K]
Standort: 4600 Wels			BGF	4024,68 m ²	Durchschnittl. Geschoßhöhe	2,81 m

Bauteile	Fläche A	Wärmed koeffiz. U - Wert	Leitwerte
	[m²]	[W/(m²·K)]	[W/K]
Decken zu unbeheiztem Dachraum	416,48	0,55	206,16
Außenwände (ohne erdberührt)	1918,01	0,36	690,48
Dach	14,70	1,85	27,20
Fenster u. Türen	500,39	1,72	859,26
Decken zu unbeheiztem Keller	262,40	1,35	247,97
Decken über Durchfahrt	35,48	0,39	13,84
Wärmebrücken (pauschaler Zuschlag nach ÖNORM B 8110-6)			159,08
Summe OBEN-Bauteile	431,18		
Summe UNTEN-Bauteile	297,88		
Summe Außenwandflächen	1918,01		
Fensteranteil in Aussenwänden 20,5 %	495,40		
Summe		[W/K]	2203,98
Spez. Transmissionswärmeverlust		[W/m³K]	0,20
Gebäude-Heizlast		[kW]	116,318
Spez. Heizlast P _T		[W/m²BGF]	28,901

Die berechnete Heizlast kann für die Auslegung des Wärmeerzeugers herangezogen werden. Für die exakte Dimensionierung der Heizungsanlage ist die ÖNORM H 7500 bzw. EN ISO 12831 anzuwenden.

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: **77_LES-NEH-7-1068_Kalkofenstraße 42, 44** Datum: 29. Mai 2013

	Allge	meine Einstel	lungen		
Einreichung für	☐ Neubau	☐ Sanierung		✓ Bestand	
Bauweise	☐ leicht	☐ mittel		✓ schwer	sehr schwer
Berücksichtigung von Wärmebrücken	✓ pauschaler Zuschlag 159 [W/K]	g detailliert lt. 0 [W/K]	Baukörpereingabe		
Keller	✓ Keller ungedämmt		mmt (Wände und Interschreiten U-Wo //(m²K)])	ert	
Verschattung	✓ vereinfacht	detailliert lt.	Baukörpereingabe		
Erdverluste	✓ vereinfacht	detailliert lt.	EN ISO 13370		
		Lüftung			
Art der Lüftung	natürliche Lüftung				
	Transpa	arente Wärmed	dämmung		
Transparente Wärmedämmung	nicht berücksichtigt				
	Gebäud	detyp / Innere	Gewinne		
Nutzungsprofil	1	Mehrfamilienhaus			
Nutzungstage Jänner Nutzungstage Februar Nutzungstage März Nutzungstage April Nutzungstage Mai Nutzungstage Juni Nutzungstage Juli Nutzungstage August Nutzungstage September Nutzungstage Oktober Nutzungstage November Nutzungstage Dezember Nutzungstage pro Jahr Tägliche Nutzungszeit Tägliche Betriebszeit Heizu Betriebstage Heizung pro J Innentemperatur Heizfall Temperatur unkonditioniert Luftwechselrate Fensterlüft Innere Gewinne Heizfall (be Bezugsfläche BF)	ng tahr ter Raum	d_Nutz,1 [d] d_Nutz,2 [d] d_Nutz,3 [d] d_Nutz,4 [d] d_Nutz,5 [d] d_Nutz,6 [d] d_Nutz,7 [d] d_Nutz,8 [d] d_Nutz,9 [d] d_Nutz,10 [d] d_Nutz,11 [d] d_Nutz,12 [d] d_Nutz,d [d] d_Nutz,d [h] t_h(d [h] d_h,a [d] theta_iu [°C] th_L,FL [1/h] q_i,h,n [W/m²]	28 (I) 31 (I) 30 (I) 31 (I) 30 (I) 31 (I) 31 (I) 31 (I) 31 (I) 31 (I) 32 (I) 34 (I) 35 (I) 365 (I) 24 (I) 24 (I) 365 (I) 20 (I) 13 (I) 0,40 (I)	Lt. ÖNORM B 8110-5)	
Tägl. Warmwasser-Wärmeb Bezugsfläche BF)	edarf (bezogen auf	wwwb [Wh/(m²-d)]	35,0 (I	Lt. ÖNORM B 8110-5)	

Optionen Heizwärmebedarf gemäß OIB-Richtline 6

Projekt: **77_LES-NEH-7-1068_Kalkofenstraße 42, 44** Datum: 29. Mai 2013

Flächenheizung

Flächenheizung nicht berücksichtigt

Fenster und Türen im Baukörper - kompakt

0/90

20 AF 1,30/1,40m

1,30 1,40

36,40

1,50

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

					Fenste	r und Ti	iren im E	Baukörp	er - k	ompakt								
Ausricht. / Neig.	Anz	Bezeichnung	Breite [m]	Höhe [m]	Fläche [m²]	Ug [W/m²K]	Uf [W/m²K]	PSI [W/mK]	lg [m]	Uw [W/m²K]	AxU [W/K]	Ag [%]	g [-]	gw [-]	fs [-]	Awirk [m²]	Qs [kWh/a]	Ant.Qs [%]
		SÜDEN																
180/90	9	AF 1,30/1,40m	1,30	1,40	16,38	1,50	1,65	0,060	4,60	1,69	27,68	72,53	0,61	0,54	0,75	4,79	3833	4,
180/90	20	AF 1,90/1,40m	1,90	1,40	53,20	1,50	1,65	0,060	7,96	1,72	91,50	71,28	0,61	0,54	0,75	15,30	12234	14,
180/90	20	AF 1,30/1,40m	1,30	1,40	36,40	1,50	1,65	0,060	4,60	1,69	61,52	72,53	0,61	0,54	0,75	10,65	8518	9,
180/90	9	FT 0,70/2,60m	0,70	2,60	16,38	1,50	1,65	0,060	5,80	1,74	28,50	65,93	0,61	0,54	0,75	4,36	3484	4,
180/90	9	AF 1,90/1,40m	1,90	1,40	23,94	1,50	1,65	0,060	7,96	1,72	41,18	71,28	0,61	0,54	0,75	6,89	5505	6,3
180/90	1	AF 1,00/1,40m	1,00	1,40	1,40	1,50	1,65	0,060	4,00	1,72	2,41	68,57	0,61	0,54	0,75	0,39	310	0,
SUM	68				147,70						252,79						33.884,4 5	38,9
		OSTEN																
90/90	9	AF 1,90/1,40m	1,90	1,40	23,94	1,50	1,65	0,060	7,96	1,72	41,18	71,28	0,61	0,54	0,75	6,89	4486	5,2
90/90	10	AF 1,90/1,40m	1,90	1,40	26,60	1,50	1,65	0,060	7,96	1,72	45,75	71,28	0,61	0,54	0,75	7,65	4985	5,7
90/90	1	AT 1,40/2,00m	1,40	2,00	2,80	1,50	1,50	0,060	11,00	1,74	4,87	63,75	0,61	0,54	0,75	0,72	469	0,5
SUM	20				53,34						91,80						9.940,21	11,42
		WESTEN																
270/90	18	AF 1,90/1,40m	1,90	1,40	47,88	1,50	1,65	0,060	7,96	1,72	82,35	71,28	0,61	0,54	0,75	13,77	8972	10,3
270/90	27	AF 1,30/1,40m	1,30	1,40	49,14	1,50	1,65	0,060	4,60	1,69	83,05	72,53	0,61	0,54	0,75	14,38	9370	10,8
270/90	9	FT 0,70/2,60m	0,70	2,60	16,38	1,50	1,65	0,060	5,80	1,74	28,50	65,93	0,61	0,54	0,75	4,36	2839	3,3
270/90	9	AF 1,90/1,40m	1,90	1,40	23,94	1,50	1,65	0,060	7,96	1,72	41,18	71,28	0,61	0,54	0,75	6,89	4486	5,2
270/90	1	AF 1,30/1,40m	1,30	1,40	1,82	1,50	1,65	0,060	4,60	1,69	3,08	72,53	0,61	0,54	0,75	0,53	347	0,4
270/90	1	AF 1,90/1,40m	1,90	1,40	2,66	1,50	1,65	0,060	7,96	1,72	4,58	71,28	0,61	0,54	0,75	0,77	498	0,6
SUM	65				141,82						242,74						26.513,5 2	30,47
		NORDEN																
0/90	20	AF 1,90/1,40m	1,90	1,40	53,20	1,50	1,65	0,060	7,96	1,72	91,50	71,28	0,61	0,54	0,75	15,30	6062	7,0

1,65 Berechnet mit ECOTECH Software, Version 3.3. Ein Produkt der BuildDesk Österreich GmbH; Snr: ECT-20120217XXXA957266

0,060

4,60

1,69

61,52 72,53 0,61 0,54

0,75

10,65

Seite 8 / 22

4,9

4221

Fenster und Türen im Baukörper - kompakt

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Ausricht. /	Anz	Bezeichnung	Breite	Höhe	Fläche	Ug	Uf	PSI	lg	Uw	AxU	Ag	g	gw	fs	Awirk	Qs	Ant.Qs
Neig.			[m]	[m]	[m²]	[W/m ² K]	[W/m ² K]	[W/mK]	[m]	[W/m ² K]	[W/K]	[%]	[-]	_[-]	[-]	[m²]	[kWh/a]	[%]
0/90	9	AF 1,60/1,40m	1,60	1,40	20,16	1,50	1,65	0,060	6,60	1,78	35,88	31,25	0,61	0,54	0,75	2,54	1007	1,2
0/90	1	AF 2,23/0,60m	2,23	0,60	1,34	1,50	1,65	0,060	6,06	1,84	2,46	54,71	0,61	0,54	0,75	0,30	117	0,1
0/90	1	AT 0,80/2,74m	0,80	2,74	2,19	1,50	1,50	0,060	7,28	1,70	3,73	66,79	0,61	0,54	0,75	0,59	234	0,3
0/90	1	AF 1,43/2,74m	1,43	2,74	3,92	1,50	1,90	0,060	25,54	2,04	7,99	63,63	0,61	0,54	0,75	1,01	399	0,5
0/90	9	AF 1,30/1,40m	1,30	1,40	16,38	1,50	1,65	0,060	4,60	1,69	27,68	72,53	0,61	0,54	0,75	4,79	1899	2,2
0/90	9	AF 1,90/1,40m	1,90	1,40	23,94	1,50	1,65	0,060	7,96	1,72	41,18	71,28	0,61	0,54	0,75	6,89	2728	3,1
SUM	70				157,53						271,94						16.667,1	19,16
																	8	

Legende: Ausricht./Neig. = Ausrichtung / Neigung [°];Breite = Architekturlichte Breite, Höhe = Architekturlichte Höhe, Fläche = Gesamtfläche(außen), Ug = U-Wert des Glases, Uf = U-Wert des Rahmens, PSI = PSI-Wert, Ig = Länge d. Glasrandverbundes (pro Fenster), Uw = gesamter U-Wert des Fensters, AxU = Fläche mal U-Wert, Ag = Anteil Glasfläche, g = Gesamtenergiedurchlassgrad(g-wert) It. Bauteil, gw = wirksamer Gesamtenergiedurchlassgrad (g* 0.9 * 0.98), fs = Verschattungsfaktor (Winter/Sommer), aWirk = wirksame Fläche (Glasfläche*gw*fs), Qs = solare Wärmegewinne, Ant. Qs = Anteil an den gesamten solaren Wärmegewinnen, Qt = Transmissionswärmeverluste

Globalstrahlungssummen

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Beiblatt: 1 a

Standardisierte Klimadaten: (Referenzklima)

 $Monatliche\ mittlere\ Außentemperaturen\ und\ monatliche\ mittlere\ Globalstrahlungssummen\ in\ kWh/m^2.$

	°C	Hori-	Süd	Südost	Ost	Nordost	Nord	Nordwes	West	Südwest	Dauer
		zontal						t			[Tage]
Jänner	-1,5	107,24	142,67	115,02	70,24	49,61	47,20	49,61	70,24	115,02	31
Februar	0,7	185,11	216,58	178,16	115,70	81,43	75,89	81,43	115,70	178,16	28
März	4,8	300,24	282,20	247,68	187,63	126,11	102,10	126,11	187,63	247,68	31
April	9,6	406,12	284,26	278,17	243,65	182,74	142,13	182,74	243,65	278,17	30
Mai	14,2	552,10	314,68	329,87	317,45	252,58	198,76	252,58	317,45	329,87	31
Juni	17,3	558,79	279,40	310,14	318,53	266,83	212,36	266,83	318,53	310,14	30
Juli	19,1	578,09	294,84	330,95	335,30	273,13	213,88	273,13	335,30	330,95	31
August	18,6	498,60	314,10	322,85	294,16	215,64	159,55	215,64	294,16	322,85	31
September	15,0	356,29	295,70	269,89	217,33	155,88	128,27	155,88	217,33	269,89	30
Oktober	9,6	231,66	252,50	212,54	147,10	96,73	85,72	96,73	147,10	212,54	31
November	4,2	113,26	150,66	120,06	72,50	50,11	47,56	50,11	72,50	120,06	30
Dezember	0,2	80,39	123,80	96,88	52,67	35,78	34,56	35,78	52,67	96,88	31

Standortbezogene Klimadaten: (Wels)

Monatliche mittlere Außentemperaturen und monatliche mittlere Globalstrahlungssummen in kWh/m².

	°C	Hori- zontal	Süd	Südost	Ost	Nordost	Nord	Nordwes t	West	Südwest	Dauer [Tage]
Jänner	-2,2	95,30	126,76	101,98	62,90	43,84	41,93	43,84	62,90	101,98	31
Februar	-0,3	170,24	199,18	163,43	107,25	74,90	69,80	74,90	107,25	163,43	28
März	3,6	288,74	271,42	239,65	181,91	121,27	98,17	121,27	181,91	239,65	31
April	8,3	412,85	288,99	284,86	247,71	185,78	144,50	185,78	247,71	284,86	30
Mai	13,0	560,17	319,30	336,10	324,90	257,68	201,66	257,68	324,90	336,10	31
Juni	16,1	562,89	281,45	315,22	320,85	270,19	213,90	270,19	320,85	315,22	30
Juli	17,8	572,37	291,91	326,25	331,98	269,02	211,78	269,02	331,98	326,25	31
August	17,3	505,86	318,69	328,81	298,46	217,52	161,87	217,52	298,46	328,81	31
September	13,8	351,61	291,84	267,22	214,48	154,71	126,58	154,71	214,48	267,22	30
Oktober	8,6	221,43	241,36	203,72	141,72	93,00	81,93	93,00	141,72	203,72	31
November	3,3	104,41	138,86	110,67	66,82	45,94	43,85	45,94	66,82	110,67	30
Dezember	-0,5	70,57	108,67	85,39	46,57	31,76	30,34	31,76	46,57	85,39	31

Wärmebedarf Standort

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Monatliche Berechnung des Wärmebedarfs:

Standort	Wels	
Klimaregion	N	
Seehöhe	312	m
LT	2.203,98	W/K
LV	1.138,50	W/K
Innentemperatur	20	°C
t_Heiz,d	24	h/d
q_ihn	3,75	W/m²
BGF	4.024,68	m²
С	338.937.50	Wh/K

Monate	Trans verluste [kWh/a]	Lüft verluste [kWh/a]	Wärme- verluste [kWh/a]	Innere Gewinne [kWh/a]	Solare Gewinne [kWh/a]	Gesamt- gewinne [kWh/a]	Gewinn/ verlust Verhältn.	Nutz grad	Bedarf [kWh/a]
Jan	36.470	18.839	55.308	8.983	2.960	11.943	0,22	1,00	43.365,7
Feb	30.088	15.542	45.630	8.114	4.827	12.941	0,28	1,00	32.690,3
Mar	26.952	13.922	40.874	8.983	7.169	16.152	0,40	1,00	24.732,7
Apr	18.553	9.584	28.137	8.693	8.940	17.634	0,63	0,99	10.721,0
Mai	11.474	5.927	17.401	8.983	11.165	20.148	1,16	0,81	1.147,3
Jun	6.180	3.192	9.372	8.693	10.799	19.493	2,08	0,48	22,6
Jul	3.594	1.856	5.450	8.983	11.071	20.054	3,68	0,27	0,3
Aug	4.365	2.255	6.619	8.983	10.282	19.265	2,91	0,34	1,7
Sep	9.820	5.073	14.893	8.693	8.248	16.941	1,14	0,82	1.062,2
Okt	18.701	9.660	28.361	8.983	6.001	14.984	0,53	1,00	13.442,4
Nov	26.555	13.717	40.273	8.693	3.186	11.879	0,29	1,00	28.394,7
Dez	33.572	17.342	50.915	8.983	2.358	11.341	0,22	1,00	39.574,0
Summe	226.323	116.911	343.233	105.768	87.005	192.774	0,56	0,77	195.155

Monate	0e	Т	а	
	[°C]	[h]	[-]	
Jan	-2,24	101,40	7,34	
Feb	-0,31	101,40	7,34	
Mar	3,56	101,40	7,34	
Apr	8,31	101,40	7,34	
Mai	13,00	101,40	7,34	
Jun	16,11	101,40	7,34	
Jul	17,81	101,40	7,34	
Aug	17,34	101,40	7,34	
Sep	13,81	101,40	7,34	
Okt	8,60	101,40	7,34	
Nov	3,27	101,40	7,34	
Dez	-0,47	101,40	7,34	

Der flächenbezogene Heizwärmebedarf beträgt:

48,49 [kWh/(m²a)]

Wärmebedarf Referenzstandort

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44 Datum: 29. Mai 2013

Monatliche Berechnung des Wärmebedarfs:

Standort	Referenzklima	
Klimaregion	N	
Seehöhe	0	m
LT	2.203,98	W/K
LV	1.138,50	W/K
Innentemperatur	20	°C
t_Heiz,d	24	h/d
q_ihn	3,75	W/m²
BGF	4.024,68	m²
C	338 937 50	Wh/K

Monate	Trans verluste [kWh/a]	Lüft verluste [kWh/a]	Wärme- verluste [kWh/a]	Innere Gewinne [kWh/a]	Solare Gewinne [kWh/a]	Gesamt- gewinne [kWh/a]	Gewinn/ verlust Verhältn.	Nutz grad	Bedarf [kWh/a]
Jan	35.304	18.237	53.541	8.983	3.323	12.306	0,23	1,00	41.235,4
Feb	28.540	14.743	43.283	8.114	5.235	13.348	0,31	1,00	29.936,6
Mar	24.908	12.867	37.775	8.983	7.431	16.414	0,43	1,00	21.380,8
Apr	16.472	8.509	24.980	8.693	8.794	17.487	0,70	0,98	7.897,0
Mai	9.511	4.913	14.423	8.983	10.961	19.944	1,38	0,70	396,9
Jun	4.237	2.189	6.426	8.693	10.721	19.414	3,02	0,33	1,3
Jul	1.443	745	2.188	8.983	11.181	20.164	9,21	0,11	0,0
Aug	2.361	1.220	3.581	8.983	10.134	19.117	5,34	0,19	0,0
Sep	7.887	4.074	11.961	8.693	8.358	17.051	1,43	0,69	279,3
Okt	16.988	8.775	25.763	8.983	6.260	15.243	0,59	0,99	10.654,0
Nov	25.136	12.984	38.120	8.693	3.456	12.149	0,32	1,00	25.972,8
Dez	32.484	16.780	49.264	8.983	2.680	11.663	0,24	1,00	37.600,9
Summe	205.270	106.035	311.305	105.768	88.532	194.301	0,62	0,70	175.355

Monate	0e	Т	а
	[°C]	[h]	[-]
Jan	-1,53	101,40	7,34
Feb	0,73	101,40	7,34
Mar	4,81	101,40	7,34
Apr	9,62	101,40	7,34
Mai	14,20	101,40	7,34
Jun	17,33	101,40	7,34
Jul	19,12	101,40	7,34
Aug	18,56	101,40	7,34
Sep	15,03	101,40	7,34
Okt	9,64	101,40	7,34
Nov	4,16	101,40	7,34
Dez	0,19	101,40	7,34

Der flächenbezogene Heizwärmebedarf beträgt:

43,57 [kWh/(m²a)]

Solare Aufnahmeflächen

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Solare Aufnahmeflächen

Wand	Fenster	Richtung	Neigung	Fläche	gw	Glasanteil	F_s	A_trans	Qs
AW1_N	AF 1,90/1,40m	0,00	90,00	[m ²] 53,20	[-] 0,54	[%] 71,28	0,75	[m ²] 15,30	[kWh] 6.062,36
AW1_N	AF 1,30/1,40m	0,00	90,00	36,40	0,54	72,53	0,75	10,65	4.220,63
AW1_N	AF 1,60/1,40m	0,00	90,00	20,16	0,54	31,25	0,75	2,54	1.007,20
	, ,	•	·	•	•		·-		•
AW1_N	AF 2,23/0,60m	0,00	90,00	1,34	0,54	54,71	0,75	0,30	117,03
AW1_N	AT 0,80/2,74m	0,00	90,00	2,19	0,54	66,79	0,75	0,59	234,05
AW1_N	AF 1,43/2,74m	0,00	90,00	3,92	0,54	63,63	0,75	1,01	398,56
AW1_N	AF 1,30/1,40m	0,00	90,00	16,38	0,54	72,53	0,75	4,79	1.899,29
AW1_N	AF 1,90/1,40m	0,00	90,00	23,94	0,54	71,28	0,75	6,89	2.728,06
AW1_O	AF 1,90/1,40m	90,00	90,00	23,94	0,54	71,28	0,75	6,89	4.486,23
AW1_O	AF 1,90/1,40m	90,00	90,00	26,60	0,54	71,28	0,75	7,65	4.984,69
AW1_O	AT 1,40/2,00m	90,00	90,00	2,80	0,54	63,75	0,75	0,72	469,29
AW1_S	AF 1,30/1,40m	180,00	90,00	16,38	0,54	72,53	0,75	4,79	3.832,91
AW1_S	AF 1,90/1,40m	180,00	90,00	53,20	0,54	71,28	0,75	15,30	12.234,33
AW1_S	AF 1,30/1,40m	180,00	90,00	36,40	0,54	72,53	0,75	10,65	8.517,57
AW1_S	FT 0,70/2,60m	180,00	90,00	16,38	0,54	65,93	0,75	4,36	3.484,46
AW1_S	AF 1,90/1,40m	180,00	90,00	23,94	0,54	71,28	0,75	6,89	5.505,45
AW1_S	AF 1,00/1,40m	180,00	90,00	1,40	0,54	68,57	0,75	0,39	309,73
AW1_W	AF 1,90/1,40m	270,00	90,00	47,88	0,54	71,28	0,75	13,77	8.972,45
AW1_W	AF 1,30/1,40m	270,00	90,00	49,14	0,54	72,53	0,75	14,38	9.369,96
AW1_W	FT 0,70/2,60m	270,00	90,00	16,38	0,54	65,93	0,75	4,36	2.839,38
AW1_W	AF 1,90/1,40m	270,00	90,00	23,94	0,54	71,28	0,75	6,89	4.486,23
_ AW1_W	AF 1,30/1,40m	270,00	90,00	1,82	0,54	72,53	0,75	0,53	347,04
AW1_W	AF 1,90/1,40m	270,00	90,00	2,66	0,54	71,28	0,75	0,77	498,47

Transmissionsverluste am Standort

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Le Verluste zu Außenluft

Bezeichnung	A [m²]	U [W/m²K]	f_ih [-]	F_FH [-]	A*U*f_ih*F_FH [W/K]
AW1_N	712,59	0,36	1,000	1,000	256,53
AF 1,90/1,40m	53,20	1,72	1,000	1,000	91,50
AF 1,30/1,40m	36,40	1,69	1,000	1,000	61,52
AF 1,60/1,40m	20,16	1,78	1,000	1,000	35,88
AF 2,23/0,60m	1,34	1,84	1,000	1,000	2,46
AT 0,80/2,74m	2,19	1,70	1,000	1,000	3,73
AF 1,43/2,74m	3,92	2,04	1,000	1,000	7,99
AF 1,30/1,40m	16,38	1,69	1,000	1,000	27,68
AF 1,90/1,40m	23,94	1,72	1,000	1,000	41,18
AW1_O	284,58	0,36	1,000	1,000	102,45
AF 1,90/1,40m	23,94	1,72	1,000	1,000	41,18
AF 1,90/1,40m	26,60	1,72	1,000	1,000	45,75
AT 1,40/2,00m	2,80	1,74	1,000	1,000	4,87
AW1_S	456,77	0,36	1,000	1,000	164,44
AF 1,30/1,40m	16,38	1,69	1,000	1,000	27,68
AF 1,90/1,40m	53,20	1,72	1,000	1,000	91,50
AF 1,30/1,40m	36,40	1,69	1,000	1,000	61,52
FT 0,70/2,60m	16,38	1,74	1,000	1,000	28,50
AF 1,90/1,40m	23,94	1,72	1,000	1,000	41,18
AF 1,00/1,40m	1,40	1,72	1,000	1,000	2,41
AW1_W	464,08	0,36	1,000	1,000	167,07
AF 1,90/1,40m	47,88	1,72	1,000	1,000	82,35
AF 1,30/1,40m	49,14	1,69	1,000	1,000	83,05
FT 0,70/2,60m	16,38	1,74	1,000	1,000	28,50
AF 1,90/1,40m	23,94	1,72	1,000	1,000	41,18
AF 1,30/1,40m	1,82	1,69	1,000	1,000	3,08
AF 1,90/1,40m	2,66	1,72	1,000	1,000	4,58
TD1	14,70	1,85	1,000	1,000	27,20
AD6 Decke über Durchfahrt	35,48	0,39	1,000	1,000	13,84
Summe	2.468,58				1.590,78

Lu Verluste zu unkonditioniertem geschlossenen Dachraum

Bezeichnung	Α	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
ID3 Decke zu unbeh. Dachraum	416,48	0,55	0,900	1,000	206,16
Summe	416,48				206,16

Lg Verluste zu Erdreich oder zu unkonditioniertem Keller

Bezeichnung	Α	U	f_ih	F_FH	A*U*f_ih*F_FH
	[m²]	[W/m ² K]	[-]	[-]	[W/K]
ID2 Decke zu unbeh. Keller	262,40	1,35	0,700	1,000	247,97
Summe	262.40				247.97

Transmissionsverluste am Standort

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Leitwerte		
Hüllfläche AB Leitwert für Bauteile, die an Außenluft grenzen Le Leitwert für Bauteile, die an unbeheizte Räume grenzen Lu Leitwert für bodenberührte Bauteile und Bauteile, die an unkonditionierte Keller grenzen Lg Leitwert der Gebäudehülle LT Leitwertzuschlag für Wärmebrücken (pauschaler Zuschlag nach ÖNORM B 8110-6) Leitwertzuschlag für Wärmebrücken (detailliert It. Baukörper) (informativ) Lüftungsleitwert L v	3.147,45 1.590,78 206,16 247,97 2.203,98 159,08 0,00 1.138,50	m² W/K W/K W/K W/K W/K W/K
Heizlast		
Innentemperatur T_i Normaußentemperatur T_{Ne} Temperaturdifferenz delta T Heizlast P_{tot} Flächenbez. Heizlast P_1	20,0 -14,8 34,8 116.318 28,9	°C °C °C W W/m²

Lüftungsverluste

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Beiblatt: 2 c

Datum: 29. Mai 2013

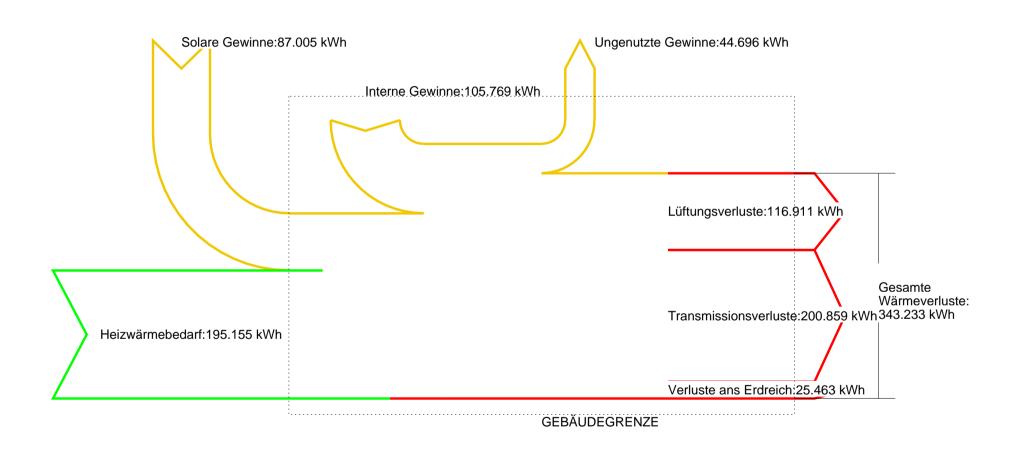
Lüftungsverluste Wohngebäude - natürliche Lüftung

Brutto-Grundfläche BGF [m²]	4024,68
Energetisch wirksames Luftvolumen V_{ij} [m³]	8371,32
Luftwechselrate n_l [1/h]	0,40
Luftvolumenstrom v_{ij} [m ³ /h]	3348,53
Wärmekapazität der Luft $\rho_L \cdot c_{n,L}$ [Wh/(m ³ ·K)]	0,34
Lüftungsleitwert L _V [W/K]	1138,50

Der Lüftungs-Leitwert $L_{\mbox{\tiny V}}$ wird gemäß ÖNORM B 8110-6:2007 wie folgt ermittelt:

$$L_{\scriptscriptstyle V} = c_{\scriptscriptstyle p,L} \boldsymbol{\cdot} \; \rho_{\scriptscriptstyle L} \; \boldsymbol{\cdot} \; v_{\scriptscriptstyle V} \; \; in \; W/K$$

Die Wärmekapazität der Luft ist mit $c_{\text{\tiny p,L}}\cdot\rho_{\text{\tiny L}}=0{,}34~\text{Wh/(m}^3{\cdot}\text{K)}$ anzusetzen.


Der Luftvolumenstrom v_v ist mit $v_v = n_L \cdot V_v = 3348,53$ m³/h anzusetzen.

Energiebilanz:

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Blatt:: Energiebilanz

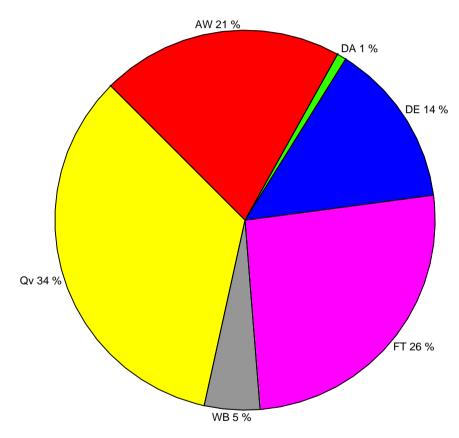


Diagramm Wärmeverluste

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Datum: 29. Mai 2013

Wärmeverluste 343233 kWh/a

Fensterübersicht (Bauteile) - kompakt

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Legende:

AB = Architekturlichte Breite, AH = Architekturlichte Höhe, Gesamtfläche (außen), Ug = U-Wert des Glases, Anteil Glas = Anteil der Glasfläche, g = g-Wert, Uf = U-Wert des Rahmens, Uspr. = U-Wert der Sprossen, Rahmen Anteil = Anteil der Rahmenfläche, Rahmen Breite = Breite des Rahmens, H-Spr. (V-Spr.) Anz = Anzahl der horizontalen (vertikalen) Sprossen H-Spr. (V-Spr.) Breite = Breite der horizontalen (vertikalen) Sprossen, Glasumfang = Länge der Glasfugen, PSI = PSI-Wert, Uref= U-Wert bei bei 1,23m x 1,48m, Uges = U-Wert des Glases anten Fensters

Bezeichnung	AB	AH	Gesamt	Ug	Anteil	g	Uf	Uspr.	Rahmen	Rahmen	H-Spr.	H-Spr.	V-Spr.	V-Spr.	Glas-	PSI	Uref	Uges
			fläche		Glas				Breite	Anteil	Anz	Breite	Anz.	Breite	umfang			
	m	m	m²	W/m²K	%		W/m ² K	W/m²K	m	%		m		m	m	W/mK	W/m ² K	W/m²K
AF 1,90/1,40m	1,90	1,40	2,66	1,50	71,28	0,61	1,65	1,65	0,10	28,72	0	0,00	1	0,12	7,96	0,06	1,69	1,72
AF 1,30/1,40m	1,30	1,40	1,82	1,50	72,53	0,61	1,65	1,65	0,10	27,47	0	0,00	0	0,00	4,60	0,06	1,69	1,69
AF 1,60/1,40m	1,60	1,40	2,24	1,50	31,25	0,61	1,65	1,65	0,10	68,75	1	0,70	0	0,00	6,60	0,06	1,69	1,78
AF 2,23/0,60m	2,23	0,60	1,34	1,50	54,71	0,61	1,65	1,65	0,10	45,29	0	0,00	2	0,10	6,06	0,06	1,69	1,84
AT 0,80/2,74m	0,80	2,74	2,19	1,50	66,79	0,61	1,50	1,50	0,10	33,21	1	0,10	0	0,00	7,28	0,06	1,65	1,70
AF 1,43/2,74m	1,43	2,74	3,92	1,50	63,63	0,61	1,90	1,90	0,08	36,40	2	0,08	3	0,08	25,54	0,06	1,75	2,04
AT 1,40/2,00m	1,40	2,00	2,80	1,50	63,75	0,61	1,50	1,50	0,10	36,25	1	0,10	1	0,15	11,00	0,06	1,65	1,74
FT 0,70/2,60m	0,70	2,60	1,82	1,50	65,93	0,61	1,65	1,65	0,10	34,07	0	0,00	0	0,00	5,80	0,06	1,69	1,74
AF 1,00/1,40m	1,00	1,40	1,40	1,50	68,57	0,61	1,65	1,65	0,10	31,43	0	0,00	0	0,00	4,00	0,06	1,69	1,72

Bauteil - Dokumentation Wärmeübertragung durch Bauteile (U-Wert) nach EN ISO 6946

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

			ußenwand mit Hinterlüftung				
Ū	OI3	Nr	•		d[m]	Lambda	d/Lambda
	¥	1	Fassadenpaneele 2)3)		0,002	221,000	0,000
	M	2	vorgehängte Fassade, hinterlüfteter Teil 2)3		0,070	0,389	0,18(
◩	M	3	vorgehängte Fassade, mit Mineralwolle ged		0,080	0,041	1,95°
⊻	M	4	2.210.008 Kalkzementputz 1800		0,020	0,800	0,02
M	M	5	1.106.008 Hochlochziegelmauerwerk 1400		0,300	0,580	0,517
✓	✓	6	2.212.010 Kalkgipsputz 1200	(0,020	0,600	0,033
			rt Berechnung / Ol3 Berechnung berücksichtigt rt Berechnung / Ol3 Berechnung nicht berücksichtigt	Rse+Rsi = 0,26 Bauteil-Dicke [m]: 0 2) Für diese Baustoffe wurden die ECOTECH-Ba 3) Diese Schicht wird nicht in die Berechnung des	ustoffdate		0,36 abgeändert!
ID1							
Verwe	ndung	: D	ecke ohne Wärmestrom				
U	OI3	Nr	Bezeichnung		d[m]	Lambda	d/Lambda
✓	M	1	Massivbetondecke, Beschüttung, Estrich 2)		0,200	0,499	0,401
			-	Rse+Rsi = 0,26 Bauteil-Dicke [m]: 0	0,200	U-Wert [W/(m ² K)]:	1,51
☑ wire	l in der	J-We	rt Berechnung / Ol3 Berechnung berücksichtigt	2) Für diese Baustoffe wurden die ECOTECH-Ba	ustoffdate		abgeändert!
			ecke mit Wärmestrom nach oben				
U	OI3	Nr	•		d[m]	Lambda	d/Lambda
¥.	M	1	Massivbetondecke, Beschüttung, Estrich 2)	(0,200	0,124	1,613
_				Rse+Rsi = 0,20 Bauteil-Dicke [m]: 0		U-Wert [W/(m ² K)]:	0,55
✓ wire	l in der	J-We	rt Berechnung / OI3 Berechnung berücksichtigt	Für diese Baustoffe wurden die ECOTECH-Ba	ustoffdate	n vom Benutzer individuell	abgeändert!
	l in der	J-We	rt Berechnung / Ol3 Berechnung berücksichtigt	Für diese Baustoffe wurden die ECOTECH-Ba	ustoffdate	n vom Benutzer individuell	abgeändert!
AD6			ert Berechnung / Ol3 Berechnung berücksichtigt ecke über Außenluft (Durchfahrten, Erker,)	2) Für diese Baustoffe wurden die ECOTECH-Ba	ustoffdate	n vom Benutzer individuell	abgeändert!
AD6 Verwe	ndung Ol3		recke über Außenluft (Durchfahrten, Erker,)	<u>'</u>	d[m]	n vom Benutzer individuell Lambda	
AD6 Verwe	ndung OI3	: D	recke über Außenluft (Durchfahrten, Erker,)	·			d/Lambda
AD6 Verwe	ndung Ol3	: D	ecke über Außenluft (Durchfahrten, Erker,) Bezeichnung		d[m]	Lambda	d/Lambda 0,40°
AD6 Verwe	ndung OI3	: D Nr 1	ecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich	mt ²⁾	d[m] 0,200	Lambda 0,499	d/Lambda 0,40° 1,95°
AD6 Verwe	ndung Ol3	: D Nr 1 2	ecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich abgehängte Decke mit Mineralwolle gedäm	mt ²⁾	d[m] 0,200 0,080 0,002	Lambda 0,499 0,041	d/Lambda 0,40° 1,95° 0,000
AD6 Verwe	ndung Ol3 🗹	: D Nr 1 2	ecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich abgehängte Decke mit Mineralwolle gedäm	mt ²⁾	d[m] 0,200 0,080 0,002 0,282	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]:	d/Lambda 0,401 1,951 0,000 0,3 9
AD6 Verwe U	ndung Ol3 🗹	: D Nr 1 2	decke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ²⁾ abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ²⁾	mt ²⁾ (0) Rse+Rsi = 0,21 Bauteil-Dicke [m]: 0	d[m] 0,200 0,080 0,002 0,282	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]:	d/Lambda 0,401 1,951 0,000 0,3 9
AD6 Verwee U I I I I I I I I I I I I I I I I I I	endung Ol3 I I I in der	: D Nr 1 2 3	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ^{2/} Pet Berechnung / OI3 Berechnung berücksichtigt	mt ²⁾ (0) Rse+Rsi = 0,21 Bauteil-Dicke [m]: 0	d[m] 0,200 0,080 0,002 0,282	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]:	d/Lambda 0,401 1,951 0,000 0,3 9
AD6 Verwee U W wire ID2 Verwee	endung OI3 I I I I I I I I I I I I I I I I I I I	: D Nr 1 2 3	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ² , abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ²) ert Berechnung / Ol3 Berechnung berücksichtigt	mt ²⁾ (Rse+Rsi = 0,21 Bauteil-Dicke [m]: 0 2) Für diese Baustoffe wurden die ECOTECH-Ba	d[m] 0,200 0,080 0,002 0,282 ustoffdate	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell	d/Lambda 0,401 1,951 0,000 0,3 \$ abgeändert!
AD6 Verwee U I I I I I I I I I I I I I I I I I I	endung OI3 I der I in der endung OI3	: D Nr 1 2 3 U-We : D	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich abgehängte Decke mit Mineralwolle gedäm Deckenpaneele art Berechnung / Ol3 Berechnung berücksichtigt ecke mit Wärmestrom nach unten Bezeichnung	mt ²⁾ (Rse+Rsi = 0,21 Bauteil-Dicke [m]: 0 2) Für diese Baustoffe wurden die ECOTECH-Ba	d[m] 0,200 0,080 0,002 0,282 uustoffdate	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda	d/Lambda 0,401 1,951 0,000 0,3 9 abgeändert!
AD6 Verwee U M W W ID2 Verwee U	endung OI3 I I I I I I I I I I I I I I I I I I I	: D Nr 1 2 3	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ² , abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ²) ert Berechnung / Ol3 Berechnung berücksichtigt	mt ²⁾ (Rse+Rsi = 0,21 Bauteil-Dicke [m]: 0 2) Für diese Baustoffe wurden die ECOTECH-Ba	d[m] 0,200 0,080 0,002 0,282 uustoffdate	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499	d/Lambda 0,401 1,951 0,000 0,33 abgeändert! d/Lambda 0,401
AD6 Verwee U M W W ID2 Verwee U M Verwee U M M Verwee U M M M M M M M M M M M M M M M M M M	endung OI3 In der endung OI3 In der	: D Nr 1 2 3 J-We	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich abgehängte Decke mit Mineralwolle gedäm Deckenpaneele art Berechnung / Ol3 Berechnung berücksichtigt ecke mit Wärmestrom nach unten Bezeichnung	mt ²⁾ (Rse+Rsi = 0,21 Bauteil-Dicke [m]: 0 2) Für diese Baustoffe wurden die ECOTECH-Ba	d[m] 0,200 0,080 0,002 0,282 uustoffdatee	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499 U-Wert [W/(m²K)]:	d/Lambda 0,401 1,951 0,000 0,39 abgeändert! d/Lambda 0,401 1,35
AD6 Verwee U W W wire ID2 Verwee U W wire	endung OI3 In der endung OI3 In der	: D Nr 1 2 3 J-We	Bezeichnung Massivbetondecke, Beschüttung, Estrich abgehängte Decke mit Mineralwolle gedäm Deckenpaneele 2) art Berechnung / Ol3 Berechnung berücksichtigt Decke mit Wärmestrom nach unten Bezeichnung Massivbetondecke, Beschüttung, Estrich 2)	mt ²⁾ (Continue of the continue of the conti	d[m] 0,200 0,080 0,002 0,282 uustoffdatee	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499 U-Wert [W/(m²K)]:	d/Lambda 0,401 1,951 0,000 0,39 abgeändert! d/Lambda 0,401 1,35
AD6 Verwee U W W ID2 Verwee U W TD1	endung Ol3 I in der endung Ol3 I in der	: D Nr 1 2 3 3 J-We	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt Pecke mit Wärmestrom nach unten Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt	mt ²⁾ (Continue of the continue of the conti	d[m] 0,200 0,080 0,002 0,282 uustoffdatee	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499 U-Wert [W/(m²K)]:	d/Lambda 0,401 1,951 0,000 0,39 abgeändert! d/Lambda 0,401 1,35
AD6 Verwee U W W W ID2 Verwee U W TD1 Verwee	endung Ol3 In der Indung Ol3 In der	: D Nr 1 2 3 J-We : D Nr 1 U-We	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt Pecke mit Wärmestrom nach unten Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt	mt ²⁾ (Continue of the continue of the conti	d[m] 0,200 0,080 0,002 0,282 uustoffdater d[m] 0,200 0,200 uustoffdater	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499 U-Wert [W/(m²K)]: n vom Benutzer individuell	d/Lambda 0,401 1,951 0,000 0,33 abgeändert! d/Lambda 0,401 1,35 abgeändert!
AD6 Verwee U W Wire ID2 Verwee U W Verwee U Verwee U Verwee U Verwee U	endung OI3 I in der endung OI3 I in der endung OI3 OI3	: D Nr 1 2 3 J-We : D Nr 1 U-We	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt Pecke mit Wärmestrom nach unten Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt Pet Berechnung / Ol3 Berechnung berücksichtigt Pet Berechnung / Ol3 Berechnung berücksichtigt Pet Berechnung / Ol3 Berechnung berücksichtigt	mt ²⁾ (Contact Rese+Rsi = 0,21 Bauteil-Dicke [m]: 0 (2) Für diese Baustoffe wurden die ECOTECH-Bauteil-Dicke [m]: 0 (Contact Rese+Rsi = 0,34 Bauteil-Dicke [m]: 0 (2) Für diese Baustoffe wurden die ECOTECH-Bauteil-Dicke [m]: 0 (2) Für diese Baustoffe wurden die ECOTECH-Bauteil-Dicke [m]: 0 (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	d[m] 0,200 0,080 0,002 0,282 uustoffdatei d[m] 0,200 0,200 uustoffdatei	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499 U-Wert [W/(m²K)]: n vom Benutzer individuell	d/Lambda 0,401 1,951 0,000 0,33 abgeändert! d/Lambda 0,401 1,35 abgeändert!
AD6 Verwee U W W W ID2 Verwee U W Verwee TD1 Verwee	endung Ol3 In der Indung Ol3 In der	: D Nr 1 2 3 J-We : D Nr 1 U-We	Pecke über Außenluft (Durchfahrten, Erker,) Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} abgehängte Decke mit Mineralwolle gedäm Deckenpaneele ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt Pecke mit Wärmestrom nach unten Bezeichnung Massivbetondecke, Beschüttung, Estrich ^{2/} Pet Berechnung / Ol3 Berechnung berücksichtigt	mt ²⁾ (Contact Rese+Rsi = 0,21 Bauteil-Dicke [m]: 0 (2) Für diese Baustoffe wurden die ECOTECH-Bauteil-Dicke [m]: 0 (Contact Rese+Rsi = 0,34 Bauteil-Dicke [m]: 0 (2) Für diese Baustoffe wurden die ECOTECH-Bauteil-Dicke [m]: 0 (2) Für diese Baustoffe wurden die ECOTECH-Bauteil-Dicke [m]: 0 (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	d[m] 0,200 0,080 0,002 0,282 uustoffdater d[m] 0,200 uustoffdater d[m] 0,200	Lambda 0,499 0,041 221,000 U-Wert [W/(m²K)]: n vom Benutzer individuell Lambda 0,499 U-Wert [W/(m²K)]: n vom Benutzer individuell	d/Lambda 0,401 1,951 0,000 0,39 abgeändert! d/Lambda 0,401 1,35

Baukörper-Dokumentation - kompakt

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Baukörper: Wohnzone

Beheizte Hülle

Bezeichnung	Länge	Breite	Höhe	Geschoße	Volumen	BGF ohne	BGF	BGF mit	beh.	A/V
	[m]	[m]	[m]		[m³]	Reduktion [m²]	Reduktion [m²]	Reduktion [m²]	Hülle [m²]	[1/m]
Wohnzone	0,00	0,00	0,00	0	11297,92	4024,68	0,00	4024,68	3147,45	0,28

Außen-Wände

Bezeich	nnung	Bauteil	U-Wert	Anzahl	Breite	Höhe	Fläche	Fenster	Türen	Abzug	Fläche	Ausricht.	Zustand
			[W/m ² K]		[m]	[m]	Brutto[m ²]	[m²]	[m²]	Zuschl.[m ²]	Netto[m²]	Neigung	
AW1_N		AW1	0,36	1,00	-	-	870,11	-155,34	-2,19	870,11	712,59	0° / 90°	warm / außen
AW1_C)	AW1	0,36	1,00	-	-	337,92	-50,54	-2,80	337,92	284,58	90° / 90°	warm / außen
AW1_S	;	AW1	0,36	1,00	-	-	604,47	-147,70	0,00	604,47	456,77	180° / 90°	warm / außen
AW1_V	V	AW1	0,36	1,00	-	-	605,90	-141,82	0,00	605,90	464,08	270° / 90°	warm / außen
SUMMI	EN						2418,40	-495,40	-4,99	2418,40	1918,01		

Decken

Bezeichnung	Bauteil	U-Wert [W/m²K]	Anzahl	Breite [m]	Höhe [m]	Fläche Brutto[m²]	Fenster [m²]	Türen [m²]	Abzug Zuschl.[m²]	Fläche Netto[m²]	Ausricht. Neigung	Zustand / Für BGF berücksichtigt
ID2 Decke zu unbeh. Keller	ID2	1,35	1,00	-	-	262,40	0,00	0,00	262,40	262,40	0° / 0°	warm / unbeheizter Keller Decke / Ja
AD6 Decke über Durchfahrt	AD6	0,39	1,00	-	-	35,48	0,00	0,00	35,48	35,48	0° / 0°	warm / Durchfahrt / Ja
ID1 Innendecke	ID1	1,51	1,00	-	-	3726,80	0,00	0,00	3726,80	3726,80	0° / 0°	warm / warm / Ja
ID3 Decke zu unbeh. Dachraum	ID3	0,55	1,00	-	-	416,48	0,00	0,00	416,48	416,48	0° / 0°	warm / unbeheizter Dachraum Decke /
SUMMEN						4441,15	0,00	0,00	4441,15	4441,15		

Dach-Flächen

Baukörper-Dokumentation - kompakt

Projekt: 77_LES-NEH-7-1068_Kalkofenstraße 42, 44

Baukörper: Wohnzone

Bezeichnung	Bauteil	U-Wert [W/m²K]	Anzahl	Breite [m]	Höhe [m]	Fläche Brutto[m²]	Fenster [m²]	Türen [m²]	Abzug Zuschl.[m²]	Fläche Netto[m²]	Ausricht. Neigung	Zustand
TD1	TD1	1,85	1,00	-	-	14,70	0,00	0,00	14,70	14,70	- / 0°	warm / außen
SUMMEN						14,70	0,00	0,00	14,70	14,70		

Volumen-Berechnung

Bezeichnung	Zustand	Geometrietyp	Volumen
			[m³]
beheiztes Volumen EG	Beheiztes Volumen	Fläche x Höhe	760,96
beheiztes Volumen 10G-90G	Beheiztes Volumen	Fläche x Höhe	10572,24
Abzug Volumen Balkone Westseite	Beheiztes Volumen	Fläche x Höhe	-35,28
SUMME			11297,92